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1. Introduction

Last three decades have seen interesting evolution of the Lagrangian description of free

massive higher spin fields in flat space and on anti de Sitter background. In the original

works of Singh and Hagen [1, 2] a massive spin–s boson was described in terms of a

totally symmetric traceless tensor field of rank–s, while a massive spin–(n+ 1
2 ) fermion was

represented by a totally symmetric γ-traceless spin-tensor of rank–n. A peculiar feature of

the Singh-Hagen formalism is that, in order to derive correct equations of motion from a

Lagrangian, one needs to introduce auxiliary fields, the fact anticipated by Fierz and Pauli

long ago in [3]. The auxiliary fields are traceless and enter the Lagrangian with specific

number coefficients. The procedure of fixing the number coefficients is tedious and their

final form is very complicated. The aforementioned trace conditions imply that the theory

is given in terms of off-shell constrained fields.

The formulations proposed in [4, 5] (for a related work see [6, 7]) provide an interesting

alternative to the Singh-Hagen formalism and generalize the latter to the case of anti de

Sitter background. The principal new ingredient is the gauge symmetry of the massive

higher spin field Lagrangian which facilitates computation of the Singh-Hagen coefficients.

Auxiliary fields play the role of Stueckelberg fields which can be gauged away leaving one

with a single massive spin–s mode. As the gauge invariant formulations are constructed

starting from the massless higher spin theories [8, 9], they share with the latter the trace

constraints on physical and auxiliary fields as well as those on gauge parameters [4, 5].

Thus, these formulations are also given in terms of off-shell constrained fields.

A completely unconstrained description for massive higher spin fields in flat space and

on anti de Sitter background was achieved within the universal BRST approach [10]–[15]

(see also the review [16]). Here a spin–s field is represented by a vector in an appropriate

Fock space and the conditions which determine an irreducible massive representation of

the Poincaré group or the anti de Sitter group come about as operators annihilating the
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state. Treating these operators as constrains one can derive the canonical BRST charge.

The action functional is then constructed in terms of the BRST charge with the use of a

special technique (see [10]–[15] for more details).

Although the BRST approach produces Lagrangian formulations in terms of uncon-

strained fields and gauge parameters, it is very general. A lot of auxiliary fields enter the

formulation. The resulting gauge theory is reducible and in the case of massive higher

spin fermionic fields the order of reducibility grows with the value of spin. Besides, for

an arbitrary value of spin an explicit form of the action functional in terms of space-time

fields (not the Fock space vectors) has not yet been derived.

Quite recently, the geometric approach to unconstrained description of massless higher

spin fields developed in [17]–[20] was generalized to the case of massive higher spin bosons

in flat space and on anti de Sitter background [21, 22]. The resulting formulations are either

nonlocal or involve higher derivatives acting on auxiliary fields. In principle, the higher

derivative terms can be eliminated by introducing extra auxiliary fields. For massless higher

spin bosonic and fermionic fields in flat space and on anti de Sitter background this was

demonstrated in [23] (see also [21] for the case of massless bosons in flat space).

The purpose of this work is to construct an easy-to-handle unconstrained gauge in-

variant Lagrangian formulation for free massive higher spin fields in flat space of arbitrary

dimension which unifies in a nice way the advantages of the BRST formulation and the ge-

ometric approach. It can be viewed as a consistent truncation of the Lagrangians obtained

within the BRST method which aims to keep a number of auxiliary fields at a reason-

able minimum. At the same time, from the very beginning, it possesses all the standard

attributes of a classical field theory like locality, the absence of higher derivative terms etc.

For massless higher spin bosonic and fermionic fields in flat space and on anti de Sitter

background such a formulation has been constructed recently in [23] (see also [21] for

massless bosons in flat space). It relies upon the so called triplet of fields [18, 19, 24] (for a

frame-like description of the triplets in flat space and on anti de Sitter background see [25]).

The triplet naturally accommodates higher spin gauge symmetry with an unconstrained

gauge parameter. It describes a chain of irreducible spin modes and admits a simple

Lagrangian description [18, 24]. In [23] unconstrained Lagrangian formulations for massless

higher spin fields in flat space and on anti de Sitter background were systematically derived

from the triplets by finding an appropriate set of gauge invariant constraints which extract

a single spin-s mode from the chain of irreducible representations contained in the triplet.

In order to write the constraints without spoiling the unconstrained gauge symmetry, one

has to introduce an additional compensator. Ultimately, one arrives at a simple Lagrangian

formulation, which is local, free from higher derivative terms and uses a quartet of fields

for an unconstrained description of any value of spin.

In this paper we generalize the quartet unconstrained formulation of [23] to the massive

case. When describing massive higher spin bosons, it proves convenient to use dimensional

reduction. So, in the next section we briefly discuss the reduction mechanism we adhere in

this work. Section 3 is devoted to an unconstrained Lagrangian description of a massive

spin–s boson in a flat space. After the dimensional reduction, each member of the quartet

gives rise to a collection of fields, including Stueckelberg fields. The resulting formulation
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is given in an easy-to-handle form and enjoys irreducible gauge invariance. In section 4

we generalize the consideration to the fermionic case, this time without making use of the

dimensional reduction. We summarize our results and discuss possible further developments

in the concluding section 5.

2. Dimensional reduction

In this section we fix the notation and discuss a dimensional reduction mechanism which

will be used below.

Within the metric-like approach a spin–s field is described by a totally symmetric

tensor of rank–s. Throughout the work the vector indices in D + 1 dimensions will be

denoted by capital Latin letters, while those in D dimensions by small Greek letters.

When analyzing equations of motion and gauge transformations for higher spin fields,

it proves convenient to switch to the notation which suppresses vector indices and auto-

matically takes care of symmetrizations. This is done by introducing an auxiliary vector

variable, say Y A, such that

ΦA1...As(X) ⇔ Φ(s)(X,Y ) = ΦA1...As(X) Y A1 . . . Y As . (2.1)

Here XA are coordinates parameterizing a (D+ 1)-dimensional pseudo-Riemannian space-

time with the metric ηAB = diag(+,−,+, . . . ,+). Denoting PA = ∂A = ∂
∂XA and ΠA =

∂
∂Y A , one has P 2 for the d’Alembertian, Π2 for the trace, (PΠ) for the divergence and

(Y P ) for the derivative of a field followed by symmetrization of indices

P 2 Φ(s)(X,Y ) ⇔ �ΦA1...As(X) ,

Π2 Φ(s)(X,Y ) ⇔ s(s− 1)ΦB
BA1...As−2(X) ,

(PΠ) Φ(s)(X,Y ) ⇔ s∂BΦBA1...As−1(X) ,

(Y P ) Φ(s)(X,Y ) ⇔
1

(s+ 1)
(∂A1ΦA2...As+1(X) + · · · + ∂As+1ΦA1...As(X)) . (2.2)

In passing from D + 1 to D dimensions, we follow a conventional recipe (see e.g. [22]).

Both the physical and auxiliary coordinates are split

XA
→ (x0, x

µ) , Y A
→ (y0, y

µ) , (2.3)

such that a tensor field of rank s in D+1 dimensions turns into a collection of fields of ranks

s, s−1, . . . , 0 in D dimensions. The metric in D dimensions reads ηµν = diag(−,+, . . . ,+).

The dependence of a resulting composite field on the Kaluza-Klein coordinate x0 is fixed

by the factor eimx0

Φ(s)(X,Y ) = (φµ1...µs(x) · y
µ1 . . . yµs + iφµ1...µs−1(x) · y

µ1 . . . yµs−1 · y0 +

+φµ1...µs−2(x) · y
µ1 . . . yµs−2 · y2

0 + iφµ1...µs−3(x) · y
µ1 . . . yµs−3 · y3

0 + . . . )eimx0 =

= (φ(s)(x, y) + iφ(s−1)(x, y) · y0 + φ(s−2)(x, y) · y2
0 + iφ(s−3)(x, y) · y3

0 + . . . )eimx0 , (2.4)

where the real parameter m is interpreted as the mass of each single component in D dimen-

sions. Notice that in our notation odd powers of the auxiliary variable y0 are accompanied
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by the extra factor i. It turns out that such a choice leads to reasonable real equations

of motion for the component fields and yields a real Lagrangian. In what follows, we use

capital letters in order to designate composite fields like in (2.4). Small letter are reserved

for the components.

Denoting pµ = ∂µ = ∂
∂xµ , πµ = ∂

∂yµ , π0 = ∂
∂y0

, one can easily transport various

operators from D + 1 to D dimensions. For example,

P 2
→ p2

−m2 , Π2
→ π2 + π2

0 ,

(PΠ) → (pπ) + imπ0 , (Y P ) → (yp) + imy0 . (2.5)

When constructing Lagrangians, it proves convenient to deal with a conjugate field

(operator). This is obtained from (2.4) by changing yµ
→ πµ, y0 → π0, which is followed

by complex conjugation of the components

ˆ̄Φ(s)(X,Π) =
1

s!
e−imx0(φ̄µ1...µs(x) · πµ1 . . . πµs − iφ̄µ1...µs−1(x) · πµ1 . . . πµs−1 · π0 +

+φ̄µ1...µs−2(x)·πµ1 . . . πµs−2 ·π
2
0 − iφ̄µ1...µs−3(x)·πµ1 . . . πµs−3 ·π

3
0+. . . ). (2.6)

The extra factor 1
s! is taken for further convenience. The auxiliary variables y0 and yµ

disappear form the expressions like Φ̂(s)(X,Π)Ψ(s)(X,Y ) which provide building blocks for

unconstrained Lagrangians to be discussed below.

In section 4 we will consider fermionic massive higher spin fields. All the components

will carry an extra Dirac spinor index. In this case the definition of the conjugate composite

field (2.6) should be modified so as to include the conventional γ0 standing on the right.

3. Massive spin-s boson in flat space

We begin by considering a quartet of fields Φ(s), C(s−1),D(s−2), E(s−3) and two Lagrange

multipliers Λ(s−2),Σ(s−4) in D+ 1 dimensions which are subject to the following equations

of motion [23]

P 2Φ(s)
− (Y P )C(s−1) +

Y 2

2
Λ(s−2) = 0, C(s−1)

−(PΠ)Φ(s)+(Y P )D(s−2) = 0,

D(s−2)
−

Π2

2
Φ(s) + (Y P )E(s−3) = 0,

Π2

2
D(s−2)

− (PΠ)E(s−3) = 0,

P 2D(s−2)
−(PΠ)C(s−1)+Λ(s−2)

−Y 2Σ(s−4) =0,
1

2
(PΠ)Λ(s−2)+(Y P )Σ(s−4) =0. (3.1)

This system holds invariant under the gauge transformation

δΦ(s)=(Y P )Υ(s−1), δC(s−1)=P 2Υ(s−1), δD(s−2)=(PΠ)Υ(s−1), δE(s−3)=
Π2

2
Υ(s−1) (3.2)

with an unconstrained local parameter Υ(s−1). As was demonstrated in [23], equations (3.1)

can be derived from a Lagrangian. Moreover, Φ(s) describes a massless spin–s boson

after eliminating the auxiliary fields C(s−1),D(s−2), E(s−3). The Lagrange multipliers

Λ(s−2),Σ(s−4) prove to vanish on-shell.
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[, ] p2 yp pπ y2

2
(yπ+πy)

2
π2

2

p2 0 0 0 0 0 0

(yp) 0 0 −p2 0 −yp −pπ

(pπ) 0 p2 0 yp pπ 0
y2

2 0 0 −yp 0 −y2
−

(yπ+πy)
2

(yπ+πy)
2 0 yp −pπ y2 0 −π2

π2

2 0 pπ 0 (yπ+πy)
2 π2 0

Table 1: The algebra of the Weyl-ordered operators quadratic in (p, y, π)

Let us apply the dimensional reduction mechanism outlined in the previous section to

equations (3.1). According to the prescription (2.4), each member of the quartet and each

Lagrange multiplier yields a chain of fields in D dimensions

Φ(s)
→ (φ(s), φ(s−1), . . . , φ) , C(s−1)

→ (c(s−1), c(s−2), . . . , c) ,

D(s−2)
→ (d(s−2), d(s−3), . . . , d), E(s−3)

→ (e(s−3), e(s−4), . . . , e) ,

Λ(s−2)
→ (λ(s−2), λ(s−3), . . . , λ), Σ(s−4)

→ (σ(s−4), σ(s−5), . . . , σ). (3.3)

The corresponding equations of motion for the components are derived from the set

(p2
−m2)Φ(s)

− (yp+ imy0)C
(s−1) +

1

2
(y2 + y2

0)Λ
(s−2) = 0, (3.4)

C(s−1)
− (pπ + imπ0)Φ

(s) + (yp+ imy0)D
(s−2) = 0, (3.5)

D(s−2)
−

1

2
(π2 + π2

0)Φ
(s) + (yp+ imy0)E

(s−3) = 0, (3.6)

1

2
(π2 + π2

0)D
(s−2)

− (pπ + imπ0)E
(s−3) = 0, (3.7)

(p2
−m2)D(s−2)

− (pπ + imπ0)C
(s−1) + Λ(s−2)

− (y2 + y2
0)Σ

(s−4) = 0, (3.8)

1

2
(pπ + imπ0)Λ

(s−2) + (yp+ imy0)Σ
(s−4) = 0 (3.9)

by collecting the terms at each given power of y0.

The gauge transformation (3.2) takes the form

δΦ(s) = (yp+ imy0)Υ
(s−1), δC(s−1) = (p2

−m2)Υ(s−1),

δD(s−2) = (pπ + imπ0)Υ
(s−1), δE(s−3) =

1

2
(π2 + π2

0)Υ
(s−1) , (3.10)

where the gauge parameter Υ(s−1) is to be understood as a composite object like in (2.4)

Υ(s−1)
→ (ǫ(s−1), ǫ(s−2), . . . , ǫ) . (3.11)

With the use of the commutators displayed in the table above one can readily verify that

equations (3.4)–(3.9) are invariant under the transformation (3.10).
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From the first line in (3.10) one concludes that the components (φ(s−1), φ(s−2), . . . , φ)

entering the composite field Φ(s) can be gauged away and, as thus, are Stueckelberg fields.

Let us demonstrate that the highest component φ(s) describes a free massive spin–s bosonic

field, while all the remaining fields vanish on-shell.

Multiplying (3.5), (3.6), (3.7) by −
1
2(π2 + π2

0), (pπ+ imπ0), (yp+ imy0), respectively,

and taking the sum, one gets

(p2
−m2)E(s−3)

−
1

2
(π2 + π2

0)C
(s−1) = 0 . (3.12)

This equation is then used to extract from (3.4)–(3.8) the following restrictions on the

Lagrange multipliers

1

4
(π2 + π2

0)(y
2 + y2

0)Λ
(s−2) = Λ(s−2)

− (y2 + y2
0)Σ

(s−4) , (3.13)

(π2 + π2
0)(Λ

(s−2)
− (y2 + y2

0)Σ
(s−4)) = 0 . (3.14)

Before analyzing equations (3.13) and (3.14), it is worth stopping for a moment to

discuss a technical issue. Consider the equation

(π2 + π2
0)(y

2 + y2
0)∆

(s) = 0 , (3.15)

where ∆(s) is an arbitrary composite field as in (2.4). Taking into account the identities

[

1

2
(π2 + π2

0),
1

2
(y2 + y2

0)

]

=
1

2
(D + 1) + yπ + y0π0 ,

[

1

2
(π2 + π2

0),
1

2
(D + 1) + yπ + y0π0

]

= π2 + π2
0 , (3.16)

where D is the dimension of space-time, and the fact that ∆(s) is a homogeneous function

of degree s in yµ1 . . . yµs−k(y0)
k

(yπ + y0π0)∆
(s) = s∆(s) , (3.17)

one concludes that ∆(s) is proportional to (π2 + π2
0)∆

(s). Acting by the operator (π2 +π2
0)

on (3.15) and using (3.16), one can demonstrate that (π2 + π2
0)∆

(s) is proportional to

(π2 + π2
0)(π

2 + π2
0)∆

(s). Clearly, this process can be continued. However, since ∆(s) is a

polynomial of the finite order in y0 and yµ, it terminates at some step. Going backward

one gets

∆(s) = 0 . (3.18)

Let us turn back to equations (3.13), (3.14). Being combined, they imply

(π2 + π2
0)(π

2 + π2
0)(y

2 + y2
0)Λ

(s−2) = 0 → (π2 + π2
0)Λ

(s−2) = 0 . (3.19)

Then the last line and the condition (3.14) yield

Σ(s−4) = 0 , (3.20)
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which on account of (3.13) gives

Λ(s−2) = 0 . (3.21)

Thus, the Lagrange multipliers Λ(s−2) and Σ(s−4) vanish on-shell.

As was mentioned above, the gauge symmetry (3.10) allows one to gauge away all

the components in the composite fields Φ(s), but for the highest component φ(s). In our

condensed notation the corresponding gauge choice reads

π0Φ
(s) = 0 . (3.22)

Then successive multiplication of (3.4) by π0, π
2
0 and higher powers of π0 allows one to

relate C(s−1) to π0C
(s−1), π0C

(s−1) to π2
0C

(s−1) etc. However, since C(s−1) is a polynomial

of the finite order in y0, one concludes that

C(s−1) = 0 . (3.23)

Clearly, equations (3.5), (3.6) can be treated in the same way and yield the result

D(s−2) = 0, E(s−3) = 0 . (3.24)

Thus, in the gauge chosen, all the component fields entering the system (3.4)–(3.9)

vanish, but for φ(s). The latter is constrained to obey the equations

(p2
−m2)φ(s) = 0 , (pπ)φ(s) = 0 , π2φ(s) = 0 . (3.25)

Eliminating the auxiliary variable yµ, one gets the well known equations describing a free

massive spin–s boson in a flat D-dimensional space

(� −m2)φµ1...µs(x) = 0 , ∂νφνµ1...µs−1(x) = 0 , φν
νµ1...µs−2

(x) = 0 . (3.26)

Finally, we give an action functional which reproduces equations (3.4)–(3.9)

S =

∫

dDx

{

1

2
Φ̂(s)(p2

−m2)Φ(s)
− sΦ̂(s)(yp+ imy0)C

(s−1)
−

1

2
sĈ(s−1)C(s−1)

−

−s(s− 1)Ĉ(s−1)(yp+ imy0)D
(s−2)

−
1

2
s(s− 1)D̂(s−2)(p2

−m2)D(s−2) +

+Λ̂(s−2)

(

1

2
(π2+π2

0)Φ
(s)

−s(s−1)D(s−2)
−

1

2
s(s−1)(s−2)(yp+imy0)E

(s−3)

)

+Σ̂(s−4)

(

1

2
s(s−1)(π2+π2

0)D
(s−2)

−
1

2
s(s−1)(s−2)(pπ+imπ0)E

(s−3)

)}

. (3.27)

A formulation in terms of conventional tensor fields, i.e. components, can be easily read

off from (3.27) by substituting the explicit form of the composite fields and taking the

derivatives with respect to the auxiliary variables yµ, y0. We would like to emphasize that,

when passing to components, all the coefficients in the action (3.27) have a very simple

form. This is to be contrasted with the constrained formulation in [1].
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That the action (3.27) is invariant under the gauge transformation

δΦ(s) = (yp+ imy0)Υ
(s−1), δC(s−1) =

1

s
(p2

−m2)Υ(s−1),

δD(s−2) =
1

s(s−1)
(pπ+imπ0)Υ

(s−1), δE(s−3) =
1

s(s−1)(s−2)
(π2+π2

0)Υ
(s−1) , (3.28)

and yields (3.4)–(3.9) as the equations of motion1 is readily verified with the use of the

table 1 and the identities

B̂(s−2)π2A(s) = s(s− 1)Â(s)y2B(s−2) , B̂(s−2)π2
0A

(s) = s(s− 1)Â(s)y2
0B

(s−2) ,

sÂ(s)(yp)B(s−1) = −B̂(s−1)(pπ)A(s) , sÂ(s)y0B
(s−1) = −B̂(s−1)π0A

(s) ,

Â(s)B(s) = B̂(s)A(s) . (3.29)

The latter are valid for arbitrary composite fields A and B with real components. Notice

that the leftmost equation entering the second line in (3.29) holds modulo a total derivative

term which can be discarded under the integral (3.27).

Let us make a few comments on the structure of the formulation (3.27). First of

all, the fields in the Lagrangian and the gauge parameters do not obey any off-shell con-

straints, i.e. one has a completely unconstrained formulation. Then, as is obvious from

equations (3.4)–(3.9), the composite field C(s−1) is purely auxiliary. It can be removed

from the consideration by solving the corresponding algebraic equation of motion (3.5).

The collection of fields (d(s−2), d(s−3), . . . , d) contained in the composite field D(s−2) is the

analogue of the auxiliary fields underlying the constrained formulation by Singh and Ha-

gen [1]. Solving (3.6) for D(s−2) is also feasible. This would lead to a higher derivative

formulation in the spirit of [22]. The more general BRST approach leads in this case to a

Lagrangian which involves more auxiliary fields [10].

Thus, the version containing two auxiliary composite fields D(s−2), E(s−3) and two

Lagrange multipliers Λ(s−2), Σ(s−4) can be viewed as the minimal unconstrained gauge

invariant Lagrangian formulation for a massive spin–s boson in a flat D-dimensional space.2

Before turning to fermionic fields, let us look at the system (3.4)–(3.9) from a different

angle. Consider the first four equations in (3.4)–(3.9) with the Lagrange multipliers

being discarded

(p2
−m2)Φ(s)

− (yp + imy0)C
(s−1) = 0 , (3.30)

C(s−1)
− (pπ + imπ0)Φ

(s) + (yp+ imy0)D
(s−2) = 0 , (3.31)

D(s−2)
−

1

2
(π2 + π2

0)Φ
(s) + (yp+ imy0)E

(s−3) = 0 , (3.32)

1

2
(π2 + π2

0)D
(s−2)

− (pπ + imπ0)E
(s−3) = 0 . (3.33)

1To be more precise, equations (3.4)–(3.9) follow from the action (3.27) after the trivial field redefinition

sC(s−1) → C(s−1), s(s−1)Λ(s−2) → Λ(s−2), s(s−1)D(s−2) → D(s−2), 1
2
s(s−1)(s−2)E(s−3) → E(s−3),

1
2
s(s − 1)(s − 2)(s − 3)Σ(s−4) → Σ(s−4) .

2A possibility to describe massive higher spin bosons in flat space in terms of a quartet of fields was

discussed in [26]. This formulation is given in terms of operators acting in a Fock space and is applicable

to the case s ≥ 4. We thank M. Tsulaia for calling our attention to [26].
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It is easy to see that they are gauge invariant and describe a massive spin–s boson. The

fifth equation

(p2
−m2)D(s−2)

− (pπ + imπ0)C
(s−1) = 0 (3.34)

proves to be a consequence of (3.30)–(3.33). Equations (3.30) and (3.31) can be derived

from a Lagrangian, while, in order to get (3.32) and (3.33) from an action functional, one

is forced to introduce two Lagrange multipliers Λ(s−2), Σ(s−4). Then the system (3.4)–(3.9)

can be viewed as an appropriate modification of (3.30)–(3.34) such that what were

previously identities among (3.30)–(3.34) turn into restrictions on the Lagrange multipliers

which constrain them to vanish on-shell. This method does not appeal to a massless theory

living in D+1 dimensions and proves to be particularly convenient for describing fermions.

4. Massive spin-s fermion in flat space

Having constructed an unconstrained Lagrangian formulation for a massive higher spin

boson in flat space, let us discuss massive higher spin fermions. In this case, the dimensional

reduction turns out to be less instructive because a naive reduction of Dirac matrices from

D + 1 to D dimensions does not yield a reasonable equation of motion. So, we choose to

properly modify the analysis in [23].

Consider a quartet of composite fields Ψ
(n)
A , C

(n−1)
A , D

(n−2)
A , E

(n−2)
A which now carry

an extra Dirac spinor index A. We impose the following equations of motion3

(γp− im)Ψ(n)
− (yp− imy0)C

(n−1) = 0 , (4.1)

C(n−1)
− (γπ + π0)Ψ

(n) + (yp− imy0)E
(n−2) = 0 , (4.2)

D(n−2) +
1

2
(γp+ im)E(n−2) +

1

2
(γπ − π0)C

(n−1) = 0 , (4.3)

(γπ + π0)D
(n−2)

− (pπ − imπ0)E
(n−2) = 0 , (4.4)

which hold invariant under the gauge transformation

δΨ(n) = (yp− imy0)Υ
(n−1) , δC(n−1) = (γp− im)Υ(n−1) ,

δD(n−2) = (pπ − imπ0)Υ
(n−1) , δE(n−2) = (γπ + π0)Υ

(n−1) . (4.5)

As in the bosonic case, the gauge symmetry allows one to gauge away all component fields

entering Ψ(n), but for the highest component which we call ψ(n)(x). In our condensed

notation the gauge choice reads

π0Ψ
(n) = 0 . (4.6)

Subsequent analysis goes along the same line as in the bosonic case. Acting by the

operator π0 on (4.1) one can relate C(n−1) to π0C
(n−1), π0C

(n−1) to π2
0C

(n−1) etc. which

yields the result

C(n−1) = 0 . (4.7)

3In what follows we keep spinor indices implicit. γµ denote the standard Dirac matrices which obey

{γµ, γν} = −2ηµν , ηµν = diag(−,+, . . . , +). We use a representation in which (γ0)
+

= γ0, (γ0γµ)
+

= γ0γµ.
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Similarly, equation (4.2) gives

E(n−2) = 0 . (4.8)

Then equation (4.3) constrains D(n−2) to vanish

D(n−2) = 0 . (4.9)

Thus, in the gauge fixed form equations (4.1)–(4.4) read

(γp − im)ψ(n) = 0 , (γπ)ψ(n) = 0 → (pπ)ψ(n) = 0 , (4.10)

or, eliminating the auxiliary variable yµ,

(γν∂ν − im)ψµ1...µn(x) = 0 , γνψ
νµ1...µn−1(x) = 0 , ∂νψ

νµ1...µn−1(x) = 0 . (4.11)

As is well known, equations (4.11) describe a massive spin s = n + 1
2 fermionic field in a

flat D-dimensional space.

Notice that at this point equation (4.4) may seem redundant. However, it will come

into a scene later on when we shall extend (4.1)–(4.4) so as to get a Lagrangian system

of equations.

In order to construct an action functional reproducing equations (4.1)–(4.4), let us

introduce three Lagrange multipliers (composite fields) Λ(n−1), Σ(n−2), Ω(n−3) which will

accompany the constraints (4.2)–(4.4) in a resulting Lagrangian. It is assumed that the

new fields are inert under the gauge transformation (4.5).

Then we consider two differential consequences of equations (4.1)–(4.4)

(γp+ im)C(n−1) + (pπ − imπ0)Ψ
(n)

− (yp− imy0)D
(n−2) = 0 , (4.12)

(γp − im)D(n−2)
− (pπ − imπ0)C

(n−1) = 0 (4.13)

and modify the resulting redundant system by including the Lagrange multipliers Λ(n−1),

Σ(n−2), Ω(n−3) in the following way

(γp− im)Ψ(n)
− (yp− imy0)C

(n−1) + (γy + y0)Λ
(n−1)=0 ,

(γp+im)C(n−1)+(pπ−imπ0)Ψ
(n)

−(yp−imy0)D
(n−2)+Λ(n−1)+

1

2
(γy−y0)Σ

(n−2)=0 ,

(γp− im)D(n−2)
− (pπ − imπ0)C

(n−1) + Σ(n−2) + (γy + y0)Ω
(n−3)=0 ,

C(n−1)
− (γπ + π0)Ψ

(n) + (yp− imy0)E
(n−2)=0 ,

D(n−2) +
1

2
(γp + im)E(n−2) +

1

2
(γπ − π0)C

(n−1)=0 ,

(γπ + π0)D
(n−2)

− (pπ − imπ0)E
(n−2)=0.(4.14)

Notice that the constraints (4.2)–(4.4) remain unchanged.

The idea behind the modification (4.14) is to convert what were previously identi-

ties among (4.1)–(4.4) and (4.12), (4.13) into restrictions on the Lagrange multipliers.

Indeed, from equations (4.14) one readily finds conditions which involve only the

Lagrange multipliers

1

2
(γπ − π0)(γy + y0)Λ

(n−1) = −(Λ(n−1) +
1

2
(γy − y0)Σ

(n−2)) , (4.15)
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Σ(n−2) + (γy + y0)Ω
(n−3) = (γπ + π0)(Λ

(n−1) +
1

2
(γy − y0)Σ

(n−2)) , (4.16)

(γπ−π0)(Σ
(n−2)+(γy+y0)Ω

(n−3)) = 0 . (4.17)

Taking into account the identities

(γπ − π0)(γy + y0) + (γy − y0)(γπ + π0) = −(D + 1 + 2(yπ + y0π0)) ,

(γπ + π0)(γy − y0) + (γy + y0)(γπ − π0) = −(D + 1 + 2(yπ + y0π0)) ,

(γπ)(γy) + (γy)(γπ) = −2(yπ) −D (4.18)

and the homogeneity condition (3.17) which is valid for an arbitrary composite field, one

can demonstrate that all the Lagrange multipliers vanish on-shell.

The proof is similar to the bosonic case and goes as follows. Acting by the operator

(γπ − π0)(γπ + π0) on (4.15) and taking into account (4.16), (4.17), (4.18) one gets

(γπ−π0)(γπ+π0)(γπ−π0)(γy+y0)Λ
(n−1) = 0 → (γπ−π0)(γπ+π0)Λ

(n−1) = 0 . (4.19)

The last line along with (4.16), (4.17) yields

(γπ − π0)(γπ + π0)(γy − y0)Σ
(n−2) = 0 → (γπ − π0)Σ

(n−2) = 0 (4.20)

which, in view of (4.17), constrains Ω(n−3) to vanish

(γπ − π0)(γy + y0)Ω
(n−3) = 0 → Ω(n−3) = 0 . (4.21)

At this point (4.16) allows one to express Σ(n−2) in terms of (γπ + π0)Λ
(n−1) which after

substitution in (4.15) yields

Λ(n−1) = 0 → Σ(n−2) = 0 . (4.22)

Thus, the extended system (4.14) is equivalent to equations (4.1)–(4.4) and, hence, de-

scribes a massive spin s = n+ 1
2 fermionic field in flat space.

The advantage of the extended version is that it can be derived from the action

functional4

S =

∫

dxD
{

i ˆ̄Ψ(n)((γp − im)Ψ(n)
− n(yp− imy0)C

(n−1) + n(γy + y0)Λ
(n−1)) −

−i ˆ̄C(n−1)(n(γp+ im)C(n−1) + (pπ − imπ0)Ψ
(n)

− n(n− 1)(yp − imy0)D
(n−2) +

+nΛ(n−1) +
1

2
n(n− 1)(γy − y0)Σ

(n−2)) − i ˆ̄D(n−2)(n(n − 1)(γp − im)D(n−2)
−

−n(pπ − imπ0)C
(n−1) + n(n− 1)Σ(n−2) + n(n− 1)(n − 2)(γy + y0)Ω

(n−3)) +

+i ˆ̄Λ(n−1)(nC(n−1)
− (γπ + π0)Ψ

(n) + n(n− 1)(yp − imy0)E
(n−2)) +

+i ˆ̄Σ(n−2)(n(n− 1)D(n−2) +
1

2
n(n− 1)(γp + im)E(n−2) +

1

2
n(γπ − π0)C

(n−1)) +

4To be more precise, equations (4.14) arise from the action after the field redefinition nC(n−1) → C(n−1),

n(n − 1)D(n−2) → D(n−2), n(n − 1)E(n−2) → E(n−2), nΛ(n−1) → Λ(n−1), n(n − 1)Σ(n−2) → Σ(n−2),

n(n − 1)(n − 2)Ω(n−3) → Ω(n−3).
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+i ˆ̄Ω(n−3)(n(n− 1)(γπ + π0)D
(n−2)

− n(n− 1)(pπ − imπ0)E
(n−2)) +

+i ˆ̄E(n−2)(
1

2
n(n− 1)(γp + im)Σ(n−2) + n(pπ − imπ0)Λ

(n−1)
−

−n(n− 1)(n − 2)(yp − imy0)Ω
(n−3))

}

. (4.23)

A formulation in terms of conventional spin-tensors, i.e. components, can be easily read

off from (4.23) by substituting the explicit form of the composite fields and taking the

derivatives with respect to the auxiliary variables yµ, y0.

That the action is real is readily verified with the use of the identities

(n ˆ̄A(n)(yp)B(n−1))
†

= −
ˆ̄B(n−1)(pπ)A(n) , (n ˆ̄A(n)y0B

(n−1))
†

= ˆ̄B(n−1)π0A
(n) ,

(n ˆ̄A(n)(γy)B(n−1))
†

= ˆ̄B(n−1)(γπ)A(n) , ( ˆ̄A(n)B(n))
†

= ˆ̄B(n)A(n) . (4.24)

The leftmost equation entering the first line in (4.24) holds modulo a total derivative term

which can be discarded under the integral (4.23). The gauge transformation leaving (4.23)

invariant reads

δΨ(n) = (yp− imy0)Υ
(n−1) , δC(n−1) =

1

n
(γp− im)Υ(n−1) ,

δD(n−2) =
1

n(n− 1)
(pπ − imπ0)Υ

(n−1) , δE(n−2) =
1

n(n− 1)
(γπ + π0)Υ

(n−1) . (4.25)

Analogously to the bosonic case, we obtained a formulation in terms of unconstrained

fields and gauge parameters with very simple number coefficients in the Lagrangian. Notice,

however, that, in contrast to the bosonic case, elimination of the auxiliary composite field

C(n−1) would lead to higher derivative terms. Thus, the formulation above can be viewed

as the minimal unconstrained gauge invariant Lagrangian formulation for a massive spin–

(n + 1
2 ) fermion in a flat D-dimensional space.

5. Conclusion

To summarize, in this work we generalized the quartet unconstrained description of massless

higher spin fields [23] to the case of massive higher spin fields in a flat space of arbitrary

dimension. Our Lagrangian formulation is given in terms of unconstrained fields and gauge

parameters and has an easy-to-handle form for an arbitrary value of spin. It is local, free

from higher derivative terms and involves a minimal number of auxiliary fields needed

for an unconstrained gauge invariant description of a free massive spin–s field. Explicit

evaluation of the number coefficients in the Lagrangian is very simple and does not require

a complicated procedure as in [1].

The quartet formulation occupies an intermediate position between the general BRST

formulation of [10, 11] and the geometric approach of [21, 22] unifying in a nice way

their advantages and avoiding their disadvantages. It is natural to expect that the quartet

formulation can be obtained from the BRST method by partial gauge fixing and eliminating

some of the auxiliary fields.
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Let us mention a few possible developments of the present work. First of all, it

would be interesting to extend the present consideration to the case of a massive spin–s

particle propagating on anti de Sitter background. Then it is interesting to study whether

the quartet unconstrained massive gauge theory in anti de Sitter space can be obtained

by means of the dimensional degression discussed recently in [27]. It is also interesting

to generalize the analysis to the case of mixed-symmetry tensor fields and to construct

supersymmetric generalizations.
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